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A new flux splitting scheme is proposed. The scheme is remarkably
simple and yet its accuracy rivals, and in some cases surpasses, that of
Roe's solver in the Euler and Navier-Stokes solutions carried out in this
study. The scheme is robust and converges as fast as the Roe splitting.
We propose an appropriately defined cell-face advection Mach number
using values from the two straddling cells via associated characteristic
speeds. This interface Mach number is then used to determine the
upwind extrapolation for the convective quantities. Accordingly, the
name of the scheme is coined as the advection upstreamn splitting
method {(AUSM). We also introduce a new pressure splitting which is
shown to behave successfully, vielding much smoother results than
ather existing pressure splittings. Of particular interest is the supersonic
blunt body problem in which the Roe scheme gives anomalous solu-
tions. The AUSM produces cosrect solutions without difficulty for a
wide range of flow conditions as well as grids.  © 1993 Academic Press, inc.

1. INTRODUCTION

Maximizing both accuracy and efficiency has been the
primary goal for designing an algorithm in numerical
analysis. This is especially important for solution of com-
plex 3D problems described by the Navier-Stokes equa-
tions which may include equations for a turbulence model
and/or chemical species. Recently upwind schemes have
become well received for the sound theoretical basis of
characteristic theory for hyperbolic systems and thus for
their capability of capturing discontinuities. Furthermore,
many advanced shock capiuring techniques such as TVD
are based on upwind schemes.

Several prominent flux splitting schemes have been com-
pared in the literature. Liou and Van Leer [1] tested three
techniques, namely the Steger—Warming (SWS), Van Leer
{VLS) and Roe splittings (RS), for a variety of problems
regarding their accuracy and efficiency. Osher’s splitting
(OS) has recently been compared with Van Leer’s by Koren
[2] and extended to both equilibrium and non-equilibrium
chemistry by Suresh and Liou [3, 47. Flux-vector splitting
(FVS8) such as VLS and SWS has proved to be a simple and
useful technique for arriving at upwind differencing and is
preeminently suited for use in implicit schemes. Unfor-

tunately, the simplicity of these two splittings comes at a
price of reduced accuracy due to numerical diffusion. Flux-
difference splitting {FDS) such as RS and OS, however, has
shown to be very accurate and particularly well suited for
explicit upwind formulations. Nevertheless, the increased
accuracy is accompanied with an increased operation count
and complexity in arriving at the complete linearization of
flux formulas for the implicit schemes. Hence, the simplicity
of FVS is still motivating researchers to investigate new
ways of splitting and combinations of FVS and FDS that do
away with the problem of numericai diffusion with only a
small (if any) increase in complexity.

In SWS, glitches exist at a point where eigenvalues
change sign, such as a sonic or a shock point. Although fixes
have been proposed, it is generally agreed that the other
three splittings are preferred within the framework of
upwind discretization. As pointed out by Van Leer himscli
L5]. the Van Leer splitting fails to recognize the contact dis-
continuity, leading to excessive numerical diffusion. As a
result, significant error appears in the viscous region which
cannot be simply cured by reducing grid size and/or using
higher order differencing. This fact had largely gone
unnoticed until 1987 when Van Leer again brought this
deficiency to the attention of researchers [6 1. Subsequently,
several efforts have been attempted to improve the original
Van Leer scheme, in particular by Hiinel and Schwane et al.
[7,8]). Van Leer, recently based upon [8], has made
a drastic improvement [97], in which the temperature
distribution of a hypersonic conic flow is predicted as
accurately as using Roe’s splitting. However, a pressure
glitch is accompanied with this new scheme. Another
approach was suggested by Liou and Steffen [11] and
Coirier and Van Leer [ 18] to include higher order polyno-
mial expansions in the split fluxes in order to vield vanishing
value at M =0. However, this is found to be less stable or
oscillatory.

Hence, the current research is motivated by the desire to
combine the efficiency of FVS and the accuracy of FDS. In
this paper, we will present a new flux splitting scheme
{details given in the next section) that is remarkably simple

0021-9991/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduciion in any form reserved.



24 LIOU AND STEFFEN

and accurate, vielding vanishing numerical diffusivity at the
stagnation. {n a variety of Euler and Navier-Stokes calcula-
tions performed, the accuracy of the present scheme is
shown to be rivaling that of Roe’s splitting. Also, the scheme
has no matrix operation, is much simpler to construct, and
thus is more efficient. Unlike Roe’s splitting, the scheme
does not mvolve differentiation of fluxes—Jacobian matrix;
hence it is not subject to the difficulty arising from the
differentiation. Specifically, the pressure derivatives with
respect to density and internal energy do not explicitly
appear in the flux formulas. This feature is especially
desirable for the gas with a general equation of state since
numerical approximation of a steep variation of thermo-
dynamic states often causes difficulties. The scheme is a
mixture, but it has the advantages of both flux-vector and
flux-difference splittings.

2. ANALYSIS
Motivarion

It would seem helpful at the outset to give reasons for the
effort of researching a new flux function, while one may
argue that current methods are quite satisfactory for predic-
ting many complex flows. Unfortunately, some recent dis-
coveries also indicate deficiencies of these methods in the
calculation of some simple flows. One example is the super-
sonic viscous flow over a cone, wherein a very thin viscous
layer is attached to the cone surface and a shock wave
stands away from the wall; for details se¢ Section 4, Case 1.
This is an ideal problem for testing the capability of cap-
turing a shock discontinuity together with a sharp-gradient
boundary layer. Thus, an algorithm must be designed to
minimize the numerical smearing at the locations where an
eigenvalue changes sign (at the shock) or approaches zero
(in the boundary layer). For example, Van Leer’s splitting
[5] can represent a shock profile well, while it greatly dif-
fuses the boundary layer. Figure ! shows that the split flux
deviates the most from the true flux at M = 0, thereby creat-
ing enormous diffusion. As a result of this nonvanishing flux
at M =0, the boundary layer is significantly broadened,
yielding incorrect pressure and temperature distributions,
as seen in Figs. 2a and b. Several fixes for the Van Leer split-
ting have been proposed to resolve this issue of nonvanish-
ing mass diffusion. Two types, in particular, have proved the
most successful to data:

1. High order polynomial expansions (HOPE} of the
flux vector given by the authors [11], and a slight variation
by Coirier and Van Leer [18], and

2. Hybrid FVS technique first proposed by Hinel er af.
[7. 8] and later extended by Van Leer [9].

The former, while capable of generating a vanishing mass
diffusion and producing excellent resuits for the conical 1D
model problem, yields nonphysical oscillatory solutions in
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FIG. 1. Mass flux splitting of the Van Leer scheme.
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2D problems. This 1s primarily due to the improper sign of
the eigenvalues of the flux Jacobian in a small region in
—1 < M < 1. The latter, while predicting correct boundary-
layer thickness and wali temperature (see Fig. 3b), yields
glitchs in the pressure near the edge of the boundary layer,
see Fig. 3a. Furthermore, an incorrect sign of the normal
velocity component near the wall will be seen later in Fig. 5.
Clearly both improvements are still unacceptable.

The Roe splitting has been commonly accepted as one of
the most accurate technigues available today. However, the
setup cost of this method requires O(n?) operations per grid
point in each iteration, where # is the number of equations.
Thus a heavy price is paid for the accuracy obtained. Several
attempts have been made to reduce the computational cost
by replacing the Roe matrix. Roe [19] proposed using the
scalar amplitude-square weighted wave speed of Harten
and Lax. Unfortunately, the scheme suffers from a stability
problem in which the L , norm of the residual can be driven
down only an order of magnitude on this test problem. One
scheme essentially equal to the RS in accuracy is the Osher
scheme. The major computation cost in this scheme lies in
the determination of the intermediate states connecting the
two states of the neighboring grid points. Again, O(n?)
operations are required.

Based on the conclusions drawn from many past
researches, one wonders whether it is possible to arrive at an
upwind scheme with the following properties: (1) accurate;
(2} simple, requiring only O(n) operations; and (3) stable,
for a wide range of problems. It is this question that
motivates the research reported in the present paper.

A New Upwind Scheme—AUSM

We turn now to the detailed derivation of the method. To
exemplify the concept, let us consider the two-dimensional
system of Euler equations for perfect gas,
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FIG. 2. Hypersonic conical flow, first-order accurate results: (2) pressure profile and (b) temperature profile, using the Van Leer and Roe splittings.
Note the diffused boundary layer of the Van Leer solution and its effect on shock location.
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FIG. 3. Hypersonic conical flow, first order accurate results: {a) pressure profile and {b) temperature profile, using the Van Leer and the modified
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oU dF &G
6t+6x+8y_0 (1)
where UT = (p, pu, pv, pE), the inviscid fluxes FT = (pu,
pu’ + p, puv, puH), GT = (pu, pou, pv* + p, pvH), and the
specific total energy E=¢+ 1/2(v* +v*)=H — p/p.

The first step 1s to recognize that the inviscid flux vector
F consists of two physically distinct parts, namely convective
and pressure terms:

Il 0 0
pu P F4

F= =F©+ 2
pr wt 0 0 2)
pH 0 0

The convective terms can now be considered as passive
scalar quantities convected by a suitably defined velocity u
at the cell interface. On the other hand, the pressure flux
terms are governed by the acoustic wave speeds. Thus we
propose to discretize the two components separately. At an
interface L <3< R, the convective terms can be effectively
written as

L pa
pu pau
Fél = =M 3
12 = M2 172 pav » (3)
pH LiR pafl L/R
where
(.)La lf MI,rz;O,
- = 4
() {( *)r: otherwise. (@)

Note that this development opens up a whole new family
of schemes based upon the formulation chosen for the
advective velocity M ;. One successful choice is to repre-
sent this velocity as a combination of the wave speeds
(M +1) traveling towards the interface (1) from the adja-
cent L and R cells. This is formally written, by combining
the contributions from both the “left” and “right” states, as

Mp=M+MZ. (5)

Various ways of defining the split Mach numbers M * exist.
In this paper we choose to use the Van Leer splitting [5].

+ LMy, i M| <L
M+={-—-4( —- ) 1 | | (6)

ST U M), otherwise.
We turn now to the pressure term by writing

Py2z=p[ +Pr- (7)

Again the pressure splitting is weighted using the polyno-
mial expansion of the characteristic speeds (M £ 1). As
observed in Ref. [10], the pressure splitting can be
expressed in terms of second-order polynomials (M + 1)* as

g(Mil)z(?.iM), it [MI<1;
psipt= (8a)
Parsimys, otherwise

The other expansion is the simplest possible form of the first
order:

(11 M), if |M<1;

piip*= (8b)

(M + |M|)/M, otherwise.

LS TN S

In fact, a whole host of choices are possible for the pressure
splitting, but with some differences. For example, the first-
order polynomial p, is non-differentiable at | M| = 1. Having
tested these two splittings thoroughly, we conciude that
both perform admirably. It is interesting to note that the
above formulas can be recast in the form

pu pa pa
puu+ p 1 pau pau
=M, +
puv 2 pav pay
pul [y paH/ | paH ] g
oa
1 pau
—§|Muz|t41/2 av
paH
0
+ -
n P T Pg ’ (9)
0
0

where A,,{s}={+}z—{+}.. Here the first term on the
RHS is clearly not a simple average of “L” and “R” states,
but rather a Mach-number-weighted average. The second
term is the numerical dissipation, rendering the flux formula
upwinding, and it has merely a scalar coefficient |M,|,
requiring only O(n) operations, in contrast to O(n®) opera-
tions by the Roe matrix. Indeed, a significant saving has
been achieved in our explicit code containing both split-
tings: a factor of about three in the 2D explicit calculation
was realized.

The above splitting of both the advective term and
pressure term completely define the inviscid flux vector. For
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FIG. 4. Hypersonic conical flow, first order accurate results: (a) pressure profile and (b) temperature profile, using the Roe and present splittings.

the viscous terms, the usual central-average representation
is used at the interface.

In summary, the new scheme treats the convective and
pressure terms separately. The convective terms are
upstream-biased using a properly defined cell-interface
velocity, while the pressure term is strictly dealt with by
using acoustic waves. Accordingly, the name of the scheme
is coined as the advection upstream splitting method
(AUSM). The method retains the simplicity and efficiency
of a FVS scheme. As the following section will bear out, the
method also achieves the high level of accuracy attributed
only to FDS methods. Furthermore, it has proven thus far
to be a robust formulation as a variety of Euler and
Navier-Stokes calculations will bear out.

3. RESULTS AND DISCUSSION

Four sets of problems were used to measure the perfor-
mance of the new splitting technique. First there is the quasi
2D viscous conical flow patterned after the experiments of
Van Leer et gl [6]. The second set of investigations
involved the 2D inviscid calculation about a NACA four-
digit series airfoil. These tests were conducted under regimes
similar to the GAMM Workshop on the Numerical Simula-
tion of Compressible Euler Flows [12]. The third problem
was the shock wave and laminar boundary-layer interaction
in which experimental measurements [13] were available
for comparison. Finally, the fourth set dealt with a super-
sonic flow over a circular cylinder for which the Roe scheme
is shown to yield anomalous solutions, depending on the
Mach number and computation grid.

Case 1. Let us consider a cone of 10°-half angle with a
computational domain spanning 5° out from the surface of

the cone. The freestream is defined by a Mach number of
7.95, Reynolds number of 4.2 x 10°, stagnation temperature
of 775.56 K, and Prandtl number of 1.0. The case of a unity
Prandtl number was chosen so that the validation of the
present scheme can be performed against the theoretical
solution for the adiabatic wall temperature given by
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FIG. 6. Hypersonic conical flow, second order accurate results: {a} pressure profile and (b) temperature profile, using the Van Leer FVS, Roe FDS,

and AUSM.

First we present first-order resuits by four techniques.
Comparison of the results will clearly show the clue as
to why some schemes fail. Next, second-order accurate
calculations, using a two-step flux extrapolation procedure
[14], were made to prove the stability of the present scheme
and the further improvement in accuracy. No limiter is
necessary for this case since the shock is relatively weak with
a pressure jump being roughly equal to three.

In Figs. 4a and b, the pressure and temperature distribu-
tions demonstrate the dramatic improvement by the AUSM
from the VLS and related modifications in [8, 9], which
were shown earlier in Figs. 3a and b. It is gratifying to see
that, while extremely simple, the present AUSM results are
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essentially indistinguishable from that of the Roe splitting,
Close analysis reveals, in Fig. 5, that the Van Leer scheme
and subsequent modifications predict the normal velocity
component near the wall with improper sign or value, in
comparison with the Roe solution. The pressure irregularity
is related to the strong change in the gradient of advective
velocity compoenent at the edge of the boundary layer. This
suggests that consistent treatment ought be applied to all
fluxes, especially the mass flux so that proper balance of
velocity components is enforced.

The second-order scheme, shown in Figs. 6a and b,
further eliminates any remnant of the glitch in the pressure
profile. As usual, the oscillation of the second-order result at
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FIG. 7. Hypersonic conical flow, convergence histories: (a) first order and {b) second order schemes.
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the shock can be made to disappear by incorporating a
standard TVD scheme. Note that the AUSM gives only
very mild oscillations near the shock in the second-order
result, weaker than in the Roe solution.

In Figs. 7a and b, convergence history of the first- and
second-order calculations for three splittings are shown.
They all have more or less the same behavior and slope.
However, it scems to indicate that the RS and AUSM are
more similar. Also, the convergence rate does not appear
deteriorated in the second-order calculations.

Case 2. The NACA 0012 airfoil was chosen for inviscid
calculations. The computational domain extends 10 chord
lengths out from the half-chord point and is composed of
O-type 97 x 33 cells. The code uses an explicit, six-stage
Runge-Kutta integration scheme {15]. The finite volume
formulation is second-order accurate, but does not include
flux limiters. The experiment was conducted under two
separate flow conditions: (a) M. = 0.85 and angle of attack
(AOA)=1.0" (b} M, =1.20 and AOA =0.0°

Both cases demonstrate the AUSM as a robust flux-split-
ting technique. In Figs. 8a, b, and ¢ we present the pressure
contours and grid for Case 2a by the AUSM and RS. There
is virtually no visible difference between the two solutions;
both have accurately captured the upper and lower surface
shocks. The solutions have converged at least four orders of
magnitude.

The pressure coeflicient at both surfaces for Case 2a has
also been plotted in Fig. 9 bot both schemes; the lines are for
the RS and the symbols for the AUSM. The AUSM appears
to be slightly more accurate than Roe’s by capturing the
inviscid singularity, so called the Zierep singularity, at the
foot of the shock on a curved surface. This is manifested by
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FI1G. 9. NACA 0012 transonic flow, surface pressure coefficient.

the overcompression followed by an expansion. However,
both shocks are defined in the same number of cells.

The entropy plots for Case 2a are displayed in Figs. 10a
and b, It is interesting to note that the entropy generated at
the leading edge is about three times weaker in magnitude
and confined in a narrower region for the AUSM than
the RS.

The pressure plots for Case 2b were presented merely to
demonstrate the capability of the AUSM to capture the bow
shock and the fishtail shock; the accuracy is evident in
Figs. 11a and b. Here, both results are essentially identical.

Up to this point, the Cases | and 2 prove that the AUSM
is as accurate as the RS. In the next two cases, we will begin
to sce significant differences, especially in the last case.

Case 3. The experiment by Hakkinen er al. [13] at
M, =20, Re_ =296 x 10°, and shock angle = 32.58° was
chosen for calculation using both the AUSM and RS. The
computational domain consists of 75 x 65 grid points. Again
no limiter is necessary for the weak shock. Perhaps it should
be advised against using the limiter for this problem, in
order to minimize unnecessary numerical diffusivity that
may overwhelin the physical viscosity. While many calcula-
tions have been reported, there are substantial variations
among these results as well as from the measurement. In the
surface pressure and friction coefficient plots of Figs. 12a
and b, we also see significant differences between two split-
tings. The AUSM gives very good agreement with the data
[13]in C,in the separation as well as reattachment regions
(solid dots are the separated region in which C, was not
measured ). For the surface pressure piotted in Fig. 12a, the
AUSM again produces good agreement with the measure-
ment in the reattachment region, but underpredicts in the
separation region. This point is particularly puzzling since
the pressure rise and the drop in skin friction should go
hand in hand. There is no apparent reason that a prediction
coincides with the C,, but not with P. However, the ability
of obtaining good agreement of the reattachment with the
data is worth noting since it is usually harder to achieve this
than to predict separation. Further investigation of the
experiment is clearly useful, but this is beyond the scope
of the present paper. Insofar as the uncertainty in the
measurements, it is hard to draw definitive judgment
regarding the accuracy of both schemes. Figures 13a and b
display the Mach contours; the AUSM results seem to give
a sharper definition of the incoming oblique shock as well as
the complex expansion/compression waves in the interac-
tion region. We note that residuals have dropped five orders
of magnitude in both calculations.

Case 4. The 2D supersonic flow over a circular blunt
body was chosen to demonstrate the ability of the AUSM to
correctly resolve the strong bow shock and the acceleration
of stagnant flow through a sonic peint to supersonic speed.
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The first-order results are given for this problem. A range of
free-stream Mach numbers from 2 to 20 were calculated
along with the study of grid effect on the solution. The
results presented were obtained from two types of grids: (1)
57 x 33 circular grid with stretching in the radial direction
and {2) 45x43 shock-aligned grid with uniform radial
spacing; they are displayed together with the Mach number
contours for the calculations to be presented.

As reported recently by Peery and Imlay [16] and Lin
[17], Roe’s splitting produced anomalous solutions that
were manifested by odd-shaped bow shocks. This non-
physical solution, sometimes referred to as the “carbuncle
phenomenon,” is not completely understood yet. Never-
theless, fixes are available in Refs. [16,17] and involve
empiricism and smoothing which amounts to adding an
extra dose of numerical dissipation. In our calculations,
three types of “carbuncle phenomena” have been observed
in the contours. They are nonsymmetric, protuberant, and
indented. The solutions appeared to be grid and Mach
number dependent. Several different Mach numbers were
examined on several different grids. In the following, we
show some typical results obtained by the Roe splitting and
ATSM. The first-order results are shown to compare the
minimum capability of each scheme for this type of problem,
Second-order results {not included) using the AUSM also
have been obtained free from the “carbuncle phenomena”
and showed improvement of accuracy.

Figures 14a and b give the comparison of Mach contours
for M., = 6.0 along with the grid in Fig. 14¢c. For the RS, a
protuberant shock is stopped at the outer boundary and a
nonsymmetric flow is developed near the stagnation point.
A velocity vector plot in this enlarged region, Fig. 13d
shows a complex but nonphysical flow pattern. The AUSM,
on the other hand, results in a smooth symmetric shock
shape. It is noted that all results reported for this case have
been obtained with residual dropped more than five decades
for both schemes.

Figures 15a and b display the results for M, = 4.0 for the
circular grid shown in 15¢. The RS yields a nonsymmetric
flow while the AUSM converges to a completely symmetric
solution. However, a slight irregularity seen on the sonic
line was attributed to the use of the pressure splitting, p;
in {8a). Close investigation of the staircase contours in the
curved part of the shock revealed that they are largely due
to the nonalignment of the shock with the circular grid
{Fig. 15c). This effect disappears as the grid is aligned with
the shock, as seen in the previous test, Figs. 14,

A change of the Mach number to M, = 3.0 on the same
grid resulted in a different type of contour in the RS calcuia-
tion. Indented but symmetric contours, Fig. 16b, were
developed. This shows the sensitivity of the RS solution to
the flow condition. Again, the AUSM gives the correct
behavior, except a slight glitch on the sonic line due to the
P sphtting.

Finally, we show how the solution for M =6.0 (see
Fig. [4)changes when the grid of Fig. 15 is used. In Figs. 17,
the RS solution changed to the indented type from the
opposite, protuberant type. Once again, the AUSM
behaved rather commendably.

In this paper, we have restricted our attention to the per-
formance of the current method for the steady-flow calcula-
tions. Preliminary study of the shock-tube problem, eg.,
Sod problem, indicates minor difficulty that arises at startup
of the calculation. A quick fix can be prescribed by, for
example, either lowering the time step or using other split-
tings initially. At later times, the results are comparable to
those from the Roe splitting. A comprehensive development
of the method with emphasis to unsteady flows wili be
reported in a companion paper.

4. CONCLUDING REMARKS

As guided by physical intuition and mathematical
property, we propose a new flux splitting formula, AUSM,
that uses a properly defined advection velocity to determine
an upstream extrapolation at the cell interface. The scheme
is remarkably simple, requiring only O(n) operation, and
renders itself for an easy implementation in a code, Further-
more, it is at least as accurate as the Roe solver for the
problems tested. In the blunt body problem, the AUSM
resulted in correct solutions without difficulty in every test
in a wide variation of flow conditions and grids, where the
Roe splitting failed. The above promising features should
make the new scheme very suitable for a calculation requir-
ing both efficiency and accuracy, e.g, in the case of
Navier—Stokes or chemical reacting flows. Qur search for an
alternative splitting that will meet the goals of efficiency,
accuracy, and robustness does suggest that there are suf-
ficient possibilities for further success.
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FIG. 13. Shock wave and boundary layer interaction, Mach contours: (a) AUSM and (b} Roe FDS. The 75 x 65 grid is shown in (c).
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FIG. 14. Mach 60 flow over a circular cylinder, Mach contours: {a) AUSM and (b) Roe FDS. The 45x43, shock aligned grid is shown in (¢).
‘The particle traces shown in (d} also demonstrate the nonphysical nature of the Roe solution, corresponding to (b).
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15. Mach 4.0 flow over a circular cylinder, Mach contours: (a) AUSM and (b) Roe FDS. The 57 x 33, radially stretched circular grid is shown



NEW FLUX SPLITTING

a
3.00
214
1.29
0.43
y-axis
4 1 0.0000
16
043 | 2 0.2000
3 0.4000
B 4 0.6000
129 - 5  0.8000
6 1.0000
7 1.2000
214 - 8  1.4000
9  1.6000
1 10 1.8000
-3.00 T T T T T T T T 11 2.0000
300 214 129 043 214 300 5 pop0n
b xaxs 13 2.4000
3.00 14 26000
| 15 2.8000
16 3.0000
214 17 3.2000
i 18 3.4000
19 3.6000
129 4 20  3.8000
0.43 |
y-axis
16
-0.43
.1A29 -
214
-3.00 T T T T T T T 1 T
300 214 129 043 0.43 1.28 214 3.00

X-axis

FIG. 16. Mach 3.0 flow over a circular cylinder, Mach contours; (a) AUSM and (b) Roe FDS. Same grid as in Fig. 15.



38

LIOU AND STEFFEN

a
1.00
o7
0.43
034 4
y-axis
1 16
014
_ 1 0.0000
2 04000
0.43 1 3 0.8000
i 4 12000
5 16000
071
6 20000
i ~ 7 2.4D00
8 28000
_100 T T T T T T T T T T 9 2m0
100 071 043 014 014 043 071 1.00 8.
s 10 3.6000
b 11 4.0000
1.00 12 4.4000
) 13 4.8000
14 .
071 82000
15 5.6000
N 16 6.0000
043 17 6.4000
18 £.8000
. 19 7.2000
o014 20 7.6000
y-axis
T 16
014 4
043 1
071
-100 T T T T T T ‘l T T T T T T
400 071 -043 014 014 043 07 1.00

X-3Xi5

FI1G. 17. Mach 6.0 flow over a circular cylinder, Mach contours: {a) AUSM and (b) Roe FDS. Same grid as in Fig. 15.



NEW FLUX SPLITTING

ACKNOWLEDGMENTS

The authors thank Professors P. L. Roe and Bram van Leer of

Untversity of Michigan for suggestions which led to improvements of
the paper.

O

REFERENCES

M.-S. Liou and B. van Leer, AIAA Paper 88-0624, 1988 (unpublished).

. B. Koten, J. Comput. Phys. 87, 25 (1990).

. A. Suresh and M.-S. Liou, AT4AA J. 29, 920 (1991).

. A. Suresh and M.-S8. Liou, The Osher scheme for non-equilibrium
reacting flows, Inr. J. Numer. Methods Fluids 15, 219 {1992).

. B. van Leer, Lecture Notes in Physics, Yol 70 (Springer-Verlag,
New York/Berlin, 1982), p. 507.

. B. van Leer, J. L. Thomas, P. L. Roe, and R. W. Newsome, AIAA
Paper 87-1104, 1987 (unpublished).

. 1. Hinel, R. Schwane, and G. Seider, ATAA Paper 87-1105, 1987

(unpublished).

I0.
11.

12.

13

14,

15.

39

. D. Hinet and R. Schwane, AIAA Paper 89-0274, 1989 (unpublished ).
. B. van Leer, NASA CP-307¢, p. 203, 1991 {unpublished).
M.-S. Liou, B. van Leer, and J.-S. Shuen, J. Comput. Phys. 87, 1 (1990},

M.-S. Liou and C. J. Steffen, Jr, NASA TM 104452 1991
{unpublished ).

GAMM Workshop on the Numerical Simulation of Compressible
Euler Flows, June 1986.

R. J. Hakkinen, I. Greber, L. Trilling, and 8. 8. Abarbanel, NASA
Memo 2-18-59W, 1959 {unpublished).

C. Hirsch, Numerical Computation of Internal and External Flaws,
Vol 2 (Wiley, New York, 1990), p. 495.

B. van Leer, C.-H. Tai, and K. G. Powell, AIAA Paper 89-1933, 1989
{anpublished).

. K. M. Perry and S. T, Imlay, AIAA Paper 88-2904, 1988
{unpublished).

. H.-C. Lin, ATAA Paper 91-1544, 1991 (unpublished}.

. W. J. Coirier and B. van Leer, ATAA Paper 91-1566, 1991

{unpublished ).
. P. L. Roe, ICASE Report 84-53, 1984 (unpublished).



